Foot Function, Exercise Related Pain and the Influence of Footwear

We live in a world where physical activity is being enthusiastically promoted but exercise related pain and injuries are on the increase. Many people are trapped in a frustrating and 'vicious cycle' of trying to lose weight and improve their metabolic health through regular exercise, only to get injured, become even less active than before and gain even more weight!

Although Leonardo DaVinci understood that the human foot is a 'masterpiece of engineering and a work of art' the importance of foot structure and function in human movement has been historically neglected or ignored by both the medical professions and the fitness industry.

This brief introduction on the human foot and it's role in exercise related pain and movement dysfunction has been written by a world renowned running coach and a senior university lecturer in Sports Science. Within it's 50 pages a simple biomechanical understanding of the human foot is presented, explaining it's vital role in everyday activities and how footwear is either destructive or restorative to foot function based on our footwear choices.
Physical activity and regular exercise have many health benefits, and the public education campaigns to reduce sitting time using standing desks, and to walk 10,000 steps per day are based on established physiological principles and medical research. Unfortunately, it is also clear from medical evidence that risk of lower back pain is more than doubled in populations that continuously stand for over 2hrs per day, and knee pain is cited as the primary reason for sedentary people being unable to exercise or engage in regular physical activity.

For the majority of people frequent 'sitting breaks' are the only effective method of relieving both chronic back and knee pain!
‘A compromised foot structure is a major perpetuating factor in the development of chronic musculoskeletal pain throughout the body’

Janet Travell, (Pioneer of Trigger Point Therapy)
70-80% of adults experience back pain during their lifetime

It is estimated that between 70% and 80% of adults experience an episode of low back pain at least once during their lifetime. The risk of developing back pain doubles in occupations requiring more than 2 hours of standing per work shift.

25-37% of people over 50 suffer chronic knee pain

Knee pain affects an estimated 25–37% of people over 50 and is the most common reason for giving up sport and exercise in adolescents and adults. In elderly populations, knee pain is the main reason given for the inability to walk and climb stairs unaided.
Foot Function: the missing link in movement-related pain

The most efficient way to increase daily activity and basal metabolic rate is to increase the amount of time spent standing and walking i.e. time on feet. The world-wide recommendation of increasing walking activity to 10,000 steps per day equates to 3,650,000 steps per year and each step loads the supporting leg and foot with forces up to 125% of bodyweight!

Based on these facts, is it any wonder that a dysfunctional foot is often the weak link in exercise and sports biomechanics and a major factor in posture-related pain?

What is the Function of the foot in human movement?

Standing and running are the two movements that represent the natural extremes of foot function: In ‘Standing’, the foot must be a compliant but stable base of support, providing maximal ground contact and stability in all directions. In ‘Running’, the foot must become a rigid lever that can store and return elastic energy to aid propulsion in the direction of movement.

The movements of walking and jogging can be considered the intermediate forms of locomotion between standing and running. They require the foot to provide less stability and become more of a lever as speed increases.

Based on evolutionary theory and the principles of ‘biological design’, the structure and ‘form’ of the human foot should reflect the mechanical and energetic requirements placed upon it, and the compromise between its ‘static’ role (standing and squatting) and its ‘dynamic’ role (walking, running and jumping)
The static and dynamic function of the human foot

Increased force and instability = increased skill and strength demands on the body (especially the foot!)
“The human foot is a masterpiece of engineering and a work of art.”

Leonardo da Vinci

Shoe-Shaped feet
The effects of shoes on the human foot

The human foot is remarkably ‘plastic’ and the habitual use of poorly designed or ill-fitting shoes can have a dramatic effect on its form and function. The ‘unshod’ human foot (a foot that has never worn shoes) typically has a broad, flat forefoot and toes that are spread out and aligned with the metatarsal heads to give the foot a ‘fan-shape’(1). The habitually shod human foot (always in a shoe) has begun to adapt to the footwear being worn and has become ‘shoeshaped’. A shoeshaped foot has a narrow forefoot relative to the rear foot, metatarsal heads that are no longer aligned horizontally, and toes that are cramped together, twisted and elevated from the floor.
In older, heavier people the shoe-shaped foot has collapsed arches and a pronated subtalar joint.

In young, athletic people the shoe-shaped foot has high rigid arches and a supinated subtalar joint.
Only by bringing peace
“from the ground up” can problems
higher in the body be “understood”

Ida. P. Rolf
(Founder of ‘Structural Integration’ and ‘Rolfing’)

Shoe-shaped feet,
standing posture and back pain
What is the ideal standing posture?

Ideal standing posture cannot be defined anatomically due to natural variation in human structure (e.g. relative limb and spine lengths etc.), but it can be defined biomechanically as:

The optimal alignment of the body in relation to gravity and its base of support (feet) which can be maintained with minimal energy expenditure during both static and dynamic loading.
Standing posture and shoe-shaped feet

The typical postural adaptation to a rigid shoe-shaped foot is the ‘sway-back’ standing posture. Due to the poor range of movement available in the ankle joints, the body’s centre of gravity is positioned towards the rear of the foot and the toes are elevated off the ground.

In an attempt to bring the centre of gravity back to the centre of the foot, the pelvis moves forward and is ‘tipped’ backwards on the hips as the torso leans or ‘sways back’ to maintain standing balance.

The most common postural adaptation to a collapsed shoe-shaped foot is the ‘kyphotic-lordotic’ standing posture. The unstable foot structure collapses under load and the pelvis and bodyweight falls forwards and inwards on to the inner part of foot.

These postural misalignments create chronic tension in muscles that must work to maintain balance. They become strained and eventually develop painful trigger points.
The asymmetrical standing posture

80% of the population are asymmetrical when weight bearing, with one foot being over pronated (collapsed shoe-shaped foot) and the other foot being supinated (rigid shoe-shaped foot). Normally the ‘dominant’ side (kicking foot) is over pronated and the ‘non-dominant’ side is supinated. This ‘misaligned’ posture is associated with asymmetrical trigger point patterns in the left and right sides of the body (see diagram).
Shoe-shaped feet, walking and knee pain
The three functional rockers

The objective of human locomotion (walking and running) is to move the body and its centre of gravity forwards. This requires both STABILITY (so we don’t fall over) and MOBILITY so that the body can progress forwards with momentum maintained. The functional human foot and ankle creates a unique pivot system based on a series of three anatomical ‘rockers’.

• **THE HEEL ROCKER:** As bodyweight ‘falls’ onto the lead leg, momentum is preserved by the rounded surface of the heel which acts as a pivot, allowing the foot to roll flat onto the ground.

• **THE ANKLE ROCKER:** Once the foot rolls flat to the floor, the ankle joint becomes the next pivot for the continued progression of bodyweight over the length of the foot until it reaches the forefoot (metatarsal heads).

• **THE FOREFOOT ROCKER:** As bodyweight reaches the metatarsal heads, the heel rises and the rounded surface of each metatarsal head serves as a pivot. The toes play a vital role in the forefoot rocker by anchoring the pivot to and increasing its contact area with the ground. Fully functional toes are essential to reduce the pressures experienced by the metatarsal heads and forefoot during walking, running and jumping.

Walking with a functional foot

Foot and ankle function in walking
The three anatomical rockers
Walking with shoe-shaped feet

THE HEEL ROCKER: In shoe-shaped feet the increased heel pressures during walking can make the heel rocker painful.

THE ANKLE ROCKER: A shoe-shaped foot normally starts out as a foot with high-rigid arches and a ‘supinated’ subtalar joint. This foot alignment limits the functional range of the ankle joint and its ability to act as a rocker. To overcome this ‘block’ in the forward direction (sagittal plane) the body has two strategies:

1. Keep the foot facing in the direction of movement and laterally load the foot and hip to move ‘around’ the sagittal block. This movement strategy requires a strong compensatory action of the lateral muscles of the lower leg and is associated with the rigid shoe-shaped foot.

2. Turn the foot ‘out’ to position the other joints of the foot that normally function in the frontal plane to function in the sagittal (forward) plane to compensate for the blocked ankle joint. These other joints (subtalar and midtarsal) normally function to ‘lock’ and ‘unlock’ the foot to become rigid or compliant as required. When repositioned to work in the sagittal plane, the excessive motion and force overload the ligaments that support the joints, creating the collapsed shoe-shaped foot.

[Images showing different foot structures and joint positions]
The forefoot rocker:

The main characteristic of ‘shoe-shaped’ feet is compromised forefoot and toe anatomy and function. In both types of shoe-shaped feet, the metatarsals are misaligned in the horizontal plane meaning the forefoot rocker no longer pivots on five metatarsal heads, but usually just three. Pressure on the forefoot due to the reduced contact area of the forefoot rocker is further increased by the inability of the toes to function as ‘stabilisers’, being cramped together and elevated, rather than spread out and flat on the floor.

Increased forefoot pressures and instability created by a compromised ‘forefoot rocker’ and the related toe dysfunction, are the biggest problems associated with ‘shoe-shaped’ feet and are major risk factors for movement-related pain and the biggest problem to overcome for people who wish to transition to more ‘minimal’ footwear.
The epidemiology and etiology of shoe-shaped feet
Functional foot (Foot shaped)

- Functional footwear
- No toe spring
- Natural flexible arch
- Foot shaped

Dysfunctional foot (Shoe shaped)

- Dysfunctional footwear
- Toe spring
- High, rigid arch
- Shoe shaped
Typical foot shape in industrialised populations

- Functional foot
- Rigid shoe-shaped foot
- Collapsed shoe-shaped foot

Distribution of foot types in modern, industrialised populations

Number of people

Type of foot
What type of foot do you have?

Take the test
A) At home with the wet footprint test:
B) With a certified be Nimble – Foot Map practitioner

Find a certified be Nimble – Foot Map practitioner

Become a certified be Nimble – Foot Map practitioner

Contact us: info@benimble.info

www.benimble.info
‘Shoes should follow the natural shape of the foot and offer uncompromising toe freedom, thereby strengthening the body as a whole’

Christian Bär, 1982
Founder of BÄR Shoes and functional footwear pioneer

How to fix shoe-shaped feet
Functional footwear defined

Shoe Design: Restoring foot function begins with restoring its ‘form’ or shape. Just as the foot becomes shoe-shaped from wearing shoe-shaped shoes, the foot will become more foot-shaped by wearing foot-shaped shoes! The adaptation of the human body to the mechanical loads and stresses placed upon it is known as ‘Wolff’s law’ in biology, and historically has been used (abused?) by many cultures e.g. Chinese foot binding, Victorian corsets and the neck coils of the Kayan people.

1- Foot-shaped design: A shoe should mimic the ‘fan-shape’ of a healthy unshod foot i.e. the widest part of the shoe should be the distance from the base of the great toe to the tip of the smallest toe (the toe-box). ‘Wide’ shoes that are not foot shaped are just as harmful to foot function as narrow shoe-shaped shoes.

2- Flat sole: The weight-bearing area of the sole should be flat to the floor to provide maximum surface area.

3- No toe-spring: The toes can only perform their stabilising role if they are in contact with the ground.
Sole thickness

The thickness of the sole will vary depending on the activity (forces acting on the foot) and the terrain. In activities that require maximum sensory feedback, a thin sole is appropriate, but in activities that expose the foot to large, repetitive loads (marathon running) or unstable, irregular substrates (trail running), a thicker sole to provide more cushioning or increased traction is appropriate.

nimbleToes-Jog
nimbleToes-Trail
nimbleToes

Sensory feedback

Thickness of sole (increased traction and/or protection)

Functional footwear defined: Sole thickness

nimbleToes
nimble sole (sensory feedback)
terrain sole (increased traction)
Jog footbed (increased protection)
terrain sole
How to use functional footwear

A consistent theme has been repeated throughout this ebook which is the ‘Goldilocks Principle’ i.e. just as too little exercise is a risk factor to health, too much exercise can also be a risk factor to health, and there is a level of exercise and activity that is ‘just right’ for each individual. This is the ‘art and science’ of personal training and coaching and beyond the scope of this little book, but there is a template that can be applied based on simple biomechanical theory.
How to use functional footwear

Based on simple physics, the demands on the movement system increase as the forces acting on the body increase (bodyweight) and/or stability decreases e.g. two feet to one foot to just the forefoot. **Start using your functional footwear with the movements on the left and slowly progress towards the movements on the right.**

Increased force and instability = Increased skill and strength demands on the body (especially the foot!)

- Standing
- Squating
- Walking
- Jogging
- Jumping
- Running
References

EXERCISE AND ACTIVITY

PAIN

STANDING POSTURE

GAIT
FOOT FORM AND FUNCTION

- Army Foot Measuring and Shoe Fitting System. A manual for commissioned officers. US War Plans Division (1918)
- Lambrinudi C. Use and Abuse of Toes. Post Graduate Medical Journal (1932)
- Rossi WA. Fashion and Foot Deformation: The need for podiatrists to deal with human nature. Podiatry Management (2001)

Lee Saxby

Lee Saxby is one of the most recognised coaches for running technique on a global level. Over the last 15 years Lee has been a key figure in the natural movement / barefoot revolution and has been consulted by various shoe companies, university research projects, and injured athletes for his ability to diagnose and correct biomechanical problems. Best-selling author Christopher McDougall (“Born to run”) as well as the barefoot professor Daniel E. Liebermann (Harvard University) were able to regain their natural athletic abilities through Lee’s coaching methods. Lee works closely together with Joe Nimble developing innovative, holistic movement concepts.

Dr. Mick Wilkinson

Senior Lecturer in Sport and Exercise Science at Northumbria University, Newcastle, UK

Dr. Wilkinson’s research area is the biology of human health and performance. His work has included applied sport science with world-class squash players, determinants of performance and training for distance running, and biomechanical aspects of running. Ongoing-funded work is exploring links between plantar sensation and regulation of bipedal gait, the influence of foot structure and footwear on foot function and joint loading in running, and exercise and nutritional impacts on thyroid hormone status, inflammation and markers of metabolic health.